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Review: Sputtering mechanisms for 
amorphous and polycrystalline solids 
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Department of Physics, University of Essex, Colchester, UK 

In this article the latest developments in the theory of sputtering of amorphous and 
polycrystalline targets are reviewed and comparison is made with available experimental 
data. Special attention is given to differences in the various theoretical approaches to the 
sputtering yield problem and the conclusions derived therefrom. 

1. Introduction 
The phenomenon of atomic ejection from solid 
surfaces under bombardment by energetic ions is 
known as "sputtering". The sputtering yield, S, 
is defined as the number of target atoms ejected 
per incoming ion. For some time, the sputtering 
process was thought of as an evaporation process 
which implied that sputtering was due to very 
high local temperatures created at or very near 
the surface by the bombarding ions. Later, 
however, measurements of the dependence of 
sputtering yield on the angle of incidence of the 
bombarding ions established that sputtering is 
really a momentum transfer process rather than 
an evaporation process. In the past decade 
various successful theories have been developed 
based on the model of atomic collision cascades 
generated inside the solid target by the bombard- 
ing ion. An incoming ion penetrates the surface 
and strikes a target atom. This atom is usually 
not itself sputtered, (at least in the case of 
perpendicular incidence, a struck atom always 
has a velocity component in the direction away 
from the target surface), but in its turn, collides 
with neighbouring lattice atoms producing 
secondary displacements. Some of these recoil 
atoms have the possibility of getting scattered 
back towards the surface with sufficient energy to 
collide with and liberate surface atoms. Mean- 
while, the incident ion describes a random path 
within the solid, losing energy by nuclear 
collisions and electronic excitation and finally 
either comes to rest or leaves the surface as a 
sputtered atom. Thus sputtering is a typical 
multiple collision process involving a cascade of 
moving target atoms. 

In the present article we shall consider only the 
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sputtering of amorphous and polycrystalline 
solids. By confining ourselves to random targets 
we avoid other processes such as channelling, 
focused collisions and anisotropy of sputtering 
yield which are generally associated with the 
regular lattice structure of single crystals. In a 
polycrystal where any anisotropy of the ejection 
pattern which could be caused by regular lattice 
structure is small, we can assume these lattice 
effects can be averaged out and therefore can be 
treated the same way as amorphous materials. 
We shall review the more recent and more 
important theories on sputtering and make 
comparison with experimental data wherever 
possible~ Generally speaking, the sputtering yield 
of amorphous solids is calculated under the 
assumption of random slowing down in an 
infinite medium. The steps taken are as follows: 
(1) to determine the energy loss in the collisions; 
(2) to determine the number of primary and 
secondary recoil atoms; (3) to find how many of 
these atoms arrive at the target surface; and (4) 
to find the atoms which have sufficient energies 
to overcome surface binding and appear as 
sputtered atoms outside the solid. In addition to 
consideration of the sputtering yield, we shall 
also discuss the sputtering efficiency of amorphous 
materials, ~, defined as the fraction of bombard- 
ing ion energy leaving the target surface via 
sputtering. 

2. Sputtering yield theory 
There are three recent important theories on the 
sputtering of amorphous and polycrystalline 
solids, all of which have been successful to some 
extent in explaining experimental observations. 
They are due to Thompson [1 ], Sigmund [2] and 
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Brandt and Laubert  [3]. We shall endeavour to 
reproduce these three theories here in a con- 
densed form so that we can compare their 
different approach to the sputtering yield 
problem. In doing so, we try to adhere as closely 
as possible to the symbols used by the respective 
authors so that readers can easily refer to their 
original papers if necessary. 

2.1. Thompson's theory (1968) 
Consider an interaction between a bombarding 
particle and an infinite solid, leading to atoms 
recoiling from their lattice sites with energy Es. 
This is called the primary event. 

The density of atoms recoiling in the energy 
range between E 2 and Es + dE2 

= q(E2) dEe. (1) 

Each of the primary recoils generates a 
secondary collision cascade in which energy is 
shared by a series of  two-body collisions. For  one 
recoil at E~, the number of atoms slowed down 
through E '  is given by a function v(E2, E'). 

Density of atoms slowed down through E '  in 
1 sec 

= ~ ;  q(E2)v(E2, E')dE2. (2) 

We can write the flux of atoms in the energy 
range between E '  and E '  + dE '  crossing any 
internal surface and travelling into a solid angle 
dO'  in direction r '  as: 

@'(E', r ') dE'  dO'  = I ;  q(E2) v(E2, E') 
dE'/dx 

cos 0 dO'  dE'  
des  47r (3) 

where dE'/dx is the energy loss per unit path 
length of the atoms in the secondary cascades. 

It  can be shown [4] that for a random cascade 

v(E2, E') = ~IE2/E' (4) 

where ~/ is of  order unity and is equal to 0.52 
assuming an inverse square form of potential 
between colliding atoms. 

For  the term dE'/dx we neglect energy loss due 
to electronic excitation (true for ion energy 
below ~ M2 keV [5]), and consider only energy 
transfers in elastic collisions between target 
atoms (mass M2). Then 

dE'/dx ~_ E'/D (5) 

where D is the nearest neighbouring spacing. 
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Substituting Equations 4 and 5 into Equation 
3, we obtain 

�9 '(E', r') dE' dO' = -E~ q(E~) E~ dE~ 

cos 0 dr2' dE '  
47r (6) 

provided E' is small compared to E~ and can be 
brought out of  the integral. 

Now we have to find q(E2), the function which 
determines the density of  recoil atoms. Let us 
assume the incident ion has mass M1 and energy 
E1 and target atoms mass Ms and energy E~. 
Their interaction is characterized by the 
Screened Coulomb potential, sometimes called 
Thomas-Fermi potential, 

Z1 Z2 d 
V(r) - - -  exp ( -  r/a) (7) 

r 

where a -- Cao/(Z 1 Z2) ~/G, C is a constant of  the 
order unity and e is the electronic charge. For a 
limited range of r, one can fit an inverse square 
function to the screened Coulomb potential [5] 
and obtain 

2ER ~5/G 
V(r )  = ~ ( Z  1 Z2I (go/ r )  2 (8) 

where Eu = ~2/2ao = 13.6 eV; a0 = 0.53A and 
e = 2.718. 

Equation 8 is applicable to ion energy range 
from 108 to 105 eV. For lower energies the 
Born-Mayer potential 

V(r) = A exp ( -  r/b) 

has to be used. 
From V(r) one can calculate dcr/dEz, the 

differential cross section for producing a primary 
event [5], and using the fact that 

q(E2) = hOP1. dcr/dEs 

where n = density of  target atoms, qb 1 = flux of  
bombarding ion crossing unit area normal to 
their path, we find: 

~s a ~ nEa A ~ ~1 
q(E2) = ~ z  for E2 < AEI (9) 

where AE~ = maximum recoil energy = 

42141 Ms 
(M~ + M~) s E1 ; a = screening radius = 

ao/(Z1 Z2)1/6; Ea = the value of/?;1 which gives 
the distance of closest approach a, in a head-on 
collision = 2ER(Z1Z2) 7/6 (M1 + M2)/eM2. 

To transform qb'(E'), the flux inside the solid. 
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Figure i Change in magnitude and direction of  the 
velocity of an atom leaving a target surface. 

into q)(E), the flux which can be measured 
outside the surface, a simple assumption is made 
of  a binding force normal to the surface. So when 
an atom leaves the surface, its velocity compon- 
ent parallel to the surface will be unaffected but 
the normal component of its kinetic energy will 
be reduced by Eb. 

This means that parallel to the surface (see 
Fig. 1), we have 

v' sin'0 = v sin r 

and normal to the surface 

E ' = E + E b .  

From these two equations we can transform 
Equation 6 into: 

~TD cos r 
q)(E, r d.Q dE = 

4~(1 + E.o/E) ~ E 2 

f ~ q(E2) dE2 d ~  d E .  (10) E2 
E+Eb 

If  we consider the spectrum as a function of E at 
a fixed angle r then at energies where Eb ~ E 
E2, we see that approximately 

O(E) oc 1/E ~. 

Thompson [1 ] has shown experimentally that the 
energy spectra of ejected Au atoms under 
bombardment by Ar + and Xe + ions exhibit this 
E -2 dependence, and indeed the main purpose of 
Thompson's theory was to predict the shape of 
the energy spectrum, 

Now if we substitute Equation 9 into Equation 
i0 and integrate first over dO with ~b going from 
0 to 7r/2 and then over dE with E from 0 to AE1 
and finally divide throughout by qbl cosr  where 

~b is the angle of ion incidence, we obtain the 
sputtering yield in atoms/ion: 

1r 2 ao ~ n 2/~ ER M1 (Z1 Z2) ~/~ 
S -  8--------7-- Eb MI + M 2 sec~b (11) 

where we have put D = n -1/~ and r/ = 1. 
The important points in this expression are 

that: (1) S is proportional to a function of the 
atomic masses and atomic numbers of the 
bombarding ion and target atom; (2) S is 
independent of El, the energy of the bombarding 
ions in the range E b ~ E I ~ < E a .  E b = s u b -  
limation energy _~ 3 to 5 eV for metals, Ea ~ 1 
to 100 keV; (3) S is proportional to secr 

2.2. S i0mund ' s  theory (1969) 
The target surface under bombardment is 
assumed to have a planar surface. Consider a 
collision cascade initiated by an ion which starts 
its motion in a plane x = 0 at a time t = 0. The 
distribution function 

G(x, v 0, v, t) d 3 v 0 dx (12) 

defines the number of atoms which, at time t, are 
moving in a layer between x and x + dx and 
have velocities lying within a velocity-space 
element dZv0 about v 0. 

The sputtering yield for backward sputtering 
of a target with a plane surface at x = 0 can be 
written as 

S =  ~d%oIVoxIfoatG(0,Vo,  V,t) (13) 

where 

d x  
d---) = V0x. 

Now we write 

F(x, Vo, V)= f o G ( x ,  Vo, V) dt (14) 

F(x, v0, v)lv0xld3v0 is the total number of atoms 
that penetrate the plane x with a velocity 
(Vo, d 3 %) during the period of the collision 
cascade. 

We then introduce the function 

H(x,V) = ~ d ~ VolVoxiF(x, Vo, V) (15) 

which in fact represents the sputtering yield for 
the case where the starting point of the cascade 
is at x = 0 and the sputtered surface is in the 
plane x. Thus H(x, v) is measurable in principle 
for x ~< 0 for backward sputtering. 
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Next we replace velocity variables with energy 
variables and write the sputtering yield as 

S(E, ~) = H(x  = O, E, ~1) (16) 

where E = energy of the impinging particle and 
~7 = direction cosine relative to x-axis. 

Finally, the Boltzmann transport equation is 
formulated in terms of H(x,  E, ~7) and solved 
using the Legendre polynomial expansion 

09 
H(x, E, ~1) -= ~ ( 2 / +  1) H~(x, E) PtO?) (17) 

l=0 

where Pl(~) are Legendre polynomials. 
To solve the Boltzmann equation, other input 

quantities such as electronic stopping cross 
section, the differential cross section for elastic 
collisions and the surface binding force have to be 
specified. 
(a) For  electronic stopping power, Lindhard's 
expression is used: 

Se(E) = K E  § �9 (18) 

The constant K depends on the atomic numbers 
and masses of  the ion and target. 
(b) For the collision cross section, the power 
potential approximation to the Thomas-Fermi 
cross section for elastic scattering described by 
Lindhard et al [7, 8] is chosen. So we have: 

dcr = CE -m T -1-m dT (19) 

where E = projectile energy; T = recoil energy; 
m = 1 for Rutherford scattering (=  1 for 
energy from 103 to 105 eV (corresponds to the 
case of an inverse square potential), = �89 for 
energy from 102 to 103 eV, = 0 for energy less 
than 102 eV). 

These values of m hold true for interaction 
between ions and atoms of medium massses. 

The constant C is given by [8]: 

C = �89 a222(2Z22 e2/a22) 2~ (20) 

for ion and atom with equal masses 

C = �89 A~ al~2(M1/M2) ~ (2Z1 Z2 e2/a~z) 2~ (21) 

for ion and atom with unequal masses, where Z1 
and Z2 are atomic numbers, a~ 2 and a22 are 
Thomas-Fermi screening radii, and A,, are 
dimensionless constants equal to 

)tl = 0.5, ~ = 0.327, )ta/3 = 1.309. (22) 

For collisions in the eV range, m = 0 and we 
have, from Equation 19: 

dcr = Co T -1 dT (23) 
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where 
Co = -~Tr )to a 2 (24) 

and )t o = 24, a = 0.219A. 
The stopping power for elastic collisions is 

given by: 

f ~ 1 CE 1-2~'~. (25) S~(E) = T de  - 1 - m 

(c) The surface binding force which affects the 
ejection of a surface atom is chosen to be that of  
a spherically symmetric potential barrier type, 
i.e. 

U(r/o) = U0 (26) 

U0 is of the order of a few eV for most metals. 
With these three input quantities the 

Boltzmann equation is solved using the Legendre 
polynomial expansion (Equation 17) to give the 
sputtering yield 

3 F(x, E, 71) (27) 
H(x,  E, ~7) - 4rra NC ~ Uo 

where F(x, E, ~7)dx is the amount of energy 
deposited in a layer (x, dx) by an ion of energy 
E starting at x = 0 and by all the recoil atoms. 
N is the atomic density of the target. 

We can rewrite Equation 27 in the form 

H(x,  E, ~) = A f ( x ,  E, ~1) (28) 
where 

3 1 
/1 _ 47r ~ NCo Uo " (29). 

In the elastic collision region where electronic 
stopping is unimportant, the distribution 
F(x, E, ~7) is approximately Gaussian and can be 
approximated by the Edgeworth expansion 
[9, 10] in terms of the moments (x  n) : 

v(E) [4,0(~) 1 
F(X,  E,  ~]) - ( A x 2 >  ~ L --  6/~1 r  - -  . . . ]  

. . . . .  (30) 

where v(E) is the amount O f energy deposited in 
the target in the form of atom motion. 

( A x  n) = ((x - (x ) ) " )  n = 2, 3 . . . .  
r = (d"/d~ :") (2~r) =~ e x p ( -  ~z/2) 

n = 0 , 1 , 2  . . . .  
= ( x  - ( x ) ) / ( z S x ~ )  ~ 

1"1 = ( ~ x 3 ) / < A x 2 2 " 3 / ~  

For backward sputtering at a surface at x = 0, 
we can obtain Equations 28 and 30 to give the 
sputtering yield 
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A E  
S(E,  7) = < A x S ) ~  [r - ~ r l  r  . . . 1  

. . . . .  (31) 

where v(E) = E in the elastic collision region and 
~o = - < x > / ( A x ~ )  ~ �9 

For the power cross section (Equation 19), the 
moments (x  ~) have the general form [11]: 

( x  '~) = (EZ"~/NC)~ h,~(~?) (32) 

where h,(~/) is some function of ~/. This means 
that ~:0 and the contents of the square brackets in 
Equation 31 are independent of ion energy. The 
factor in front of the brackets is proportional to 
N C E  ~-s'~, which is essentially the stopping power 
(Equation 25). Hence the sputtering yield is a 
product of the stopping power and some 
function of the angle of ion incidence which may 
depend on m and the mass ratio M.,/M1. 

We note that for medium mass ions and atoms, 
in the energy range from I0 ~ to 105 eV, m = �89 
which makes the sputtering yield S(E, rl) 
independent of ion energy. This finding agrees 
with that of Thompson (Equation 11). 

The angular dependence of the sputtering 
yield is given by Sigmund as 

S(E, ~1) 
S(E, 1) - ~7-f = (cos 0) -r (33) 

for not-too-oblique incidence, where S(E, 1) is 
the yield for perpendicular incidence, f _ 5/3 for 
mass ratios M2/MI < 3 and Sigmund also shows 
that f is nearly the same for m = �89 and m = �89 
indicating in the energy range from l0 s to 10 ~ eV 
the angular variation of the yield is not sensitive 
to ion energy. 

2.3. Theory by Brandt and kaubert  (1967) 
This theory is based on the concepts advanced by 
Lindhard et at [6, 7] on the energy loss by an ion 
travelling in a solid. A comprehensive sputtering 
yield curve is derived which is valid for a wide 
range of ion-target combinations and for all ion 
energies large compared with the energy required 
to displace a lattice atom. 

Consider an incoming ion of atomic number 
Z~, mass 3/1 and initial energy E1 colliding with a 
random target whose atoms have atomic number 
Zs, mass 21//2 and average density N2. The ion 
loses energy by nuclear collisions and electronic 
excitation. After it has travelled a distance r, it 
displaces an atom fi'om its lattice position and 
this atom recoils with energy Es. This primary 
recoil atom creates a secondary cascade of 

displaced atoms. On average dns(E) secondary 
recoil atoms are created in the energy range 
between E and E + dE. 

Integrating over the whole distance travelled 
by the incoming ion, we can write the total 
number of atoms escaping from the target 
surface due to the atom motion caused by this 
ion, i.e. the sputtering yield, as 

S = 7Ns fE  dqls(Es)fEdns(E)ls(E.z - E) (34) 

where 7 = (cos 0) -1 and 0 is the angle between 
the direction of the ion beam and the normal to 
the target surface; qls(E2)= cross section for 
energy transfer between the ion and target atom; 
and 12(E 2 - E) = the path length of the cascade, 
i.e. the distance away from the site of the initial 
event where dns(E ) atoms are dislodged. If the 
ion energy is large, then we have: 

dns(E) 1 
- (1 - dk(E)) (35) 

dE U.~ 

where U2 = energy required to displace an atom 
from its rest position (about 20 to 30 eV for 
metals) and dk(E) = a numerical factor which 
accounts for the energy lost to electronic 
excitations. 

Let Ee denote the energy at which electronic 
stopping power becomes comparable with 
nuclear stopping power, i.e. at ion energies > Ms 
keV. For  E ~ Ee, we have: 

3 
dk(E) = ~ ~(E/Ee) ~ + . . .  (36) 

The constant ~ is slightly larger than unity. The 
stopping cross section of the target for the 
bombarding ions is given by 

Sis(E1) = f E~ E dqv, . (37) 

According to Brandt and Laubert, Is(E) can be 
written as: 

12(E ) ~- 1011 - exp ( -  L(E)/Io) ] (38) 

where l 0 is a constant characteristic to the target 
material, and L(E) the path length of energy 
propagation in the cascade. 

Putting Equations 35, 37 and 38 into Equation 
34, the sputtering yield becomes: 

S = 7,(E1/Us)x -1 [~(x) - ~ k ]  (39) 

where x is a dimensionless variable given by: 

X ~ E l t { [  o Ns  S12(E1)} ~ E/{)t 0 ~12 or@)} (40) 
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in which 

~0 = 3.25 x 10 -a for most metals (41) 

= E~I,,,~ (42) 

where 

~12 = Z1 Z~ E2(M~ + M2)/(a~ M2) (43) 

a ~  = (9~ /2~)  1/~ ao(Z~ ~/~ + z ~ / ~ )  -~ (44) 

ao = h2/me ~ = Bohr radius (45) 
and 

C12 = { 8 M 1 M J ( M I  + M2) 2 } Z22/aI(Z, ~/3 + Z~ 2/3) 
. . . . .  (46) 

or(e) = the scaled nuclear stopping power 

= (s N2 S~2 (47) 
where 

~6.~12 = (M1 + Mz)2/(4rr aaz 2 M1 Nz M2) (48) 

or(e) has been calculated by Lindhard et al [7] 
for the Thomas-Fermi approximation of the 
scattering potential (Equation 7). 

Having defined x in Equation 39, Brandt and 
Laubert find, using Thomas-Fermi potential [8 ] : 

q~(x) = 1 - { 2 x -  1 + e x p ( -  2x)} /2x  2 (49) 

and 

A k  = ~(x/xc) ~ ~b(x) for E ~ Ee (50) 

where 

xe = (~c/~)x (51) 

~(x) = ~{l + (3/2x~) 

[1 - x - (1 + x) exp ( -  2x)]}. (52) 

At high ion energies, we can rewrite Equations 49 
and 52 as: 

~o(x) = 1 - x -1 + (2xZ) -~ (53) 

~h(x) = �89 - (3/2x 2) + (3/2x3)]. (54) 

If  electronic stopping can be neglected, i.e. 
Ak = 0 in Equation 39, Brandt and Laubert show 
that at high ion energies (E~ >> 1 keY) the 
sputtering yield can be written as: 

s = ( r < d s o  C .  ~o ,~(,) �9 (55) 

This means that the sputtering yield is propor- 
tional to a function of the atomic numbers and 
masses of the particles, proportional to the 
nuclear stopping power and its angular depend- 
ence goes as sec 0. In the energy range 10 a to 
105 eu  where the Thomas-Fermi potential can 
be approximated to an inverse square type (see 
Equations 7 and 8), Lindhard [7] shows that 
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~r(e) becomes independent of ion energy; hence S 
is independent of ion energy. These conclusions 
reached by Brandt and Laubert are largely 
similar to those of Thompson and Sigmund. 

3. Comparison of experimental data of 
sputtering yield with theory 

The sputtering yield of solids has been measured 
by various different methods. The simplest 
method is the determination of mass difference of 
the target before and after sputtering by weighing. 
Another simple way sometimes favoured is by 
measuring the eroded volume with interference 
microscopy, but this method requires a smooth 
and reflecting surface in order to achieve reason- 
able accuracy. Other novel techniques of yield 
measurements include one of spectroscopic 
detection [12] in which the intensity of the emis- 
sion lines of the sputtered particles as a function 
of ion beam current and energy is calibrated 
using the weight loss method. While this tech- 
nique does not appear to offer any immediate 
advantage over the former two, its use may be 
more appreciated when the different sputtering 
yields of the various components in an alloy or a 
multiphase material are required since different 
components can be distinguished by their 
characteristic emission lines [13]. It is perhaps 
worth mentioning here that work of this kind on 
multiphase materials is virtually nonexistent and 
it is highly desirable to carry out such studies 
because of its practical importance. 

Sputtering yield measurements on amorphous 
and polycrystalline solids have been widely 
carried out in the past 15 years or so. To interpret 
the experimental results in terms of the above 
three theories we are interested in the sputtering 
yield expressed as (i) a function of the ion energy, 
(ii) a function of angle of ion incidence and (iii) a 
function of  masses of the incident ion and target 
material. However, the sputtering yield data 
given in terms of the ratio of atoms/ion is 
misleading in the majority of investigations 
because the parameters of the incident ion beam 
were not well defined. For example, most experi- 
ments were carried out without using any mass 
analysing attachment. This means the ion beam 
probably contained energetic doubly or even 
triply charged ions of the species under study 
plus a host of other impurityions such as H +, H2+, 
N +, O +, HO +, H20 + etc, due to contamination 
of pump vapours and degassing of the apparatus 
etc [14]. This puts the energy and mass of the 
incident ions in doubt. If  the pressure in the 
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apparatus is high, then the energetic ions will 
have the probability of colliding with the neutral 
gas atoms giving rise to a neutral component in 
the ion beam. This causes an uncertainty in the 
determination of the number of ions arriving at 
the target surface. Also, back diffusion due to 
high pressure near the target surface will cause 
redeposition of particles sputtered from the 
target. 

In view of the uncertainties which exist, 
exacting experimental requirements must be 
satisfied for reliable sputtering yield data to be 
obtained. It is therefore essential to use: (1) ions 
of definite energy, (2) ions of definite mass and 
charge, (3) ions with a definite angle of incidence, 
(4) a low pressure in the apparatus. Much of the 
earlier work was not performed under well- 
defined experimental conditions. In the following 
sections, we shall only discuss work in which 
most of the parameters have been brought under 
control. 

3.1. Variation of sputtering yield with ion 
energy 

Figs. 2 and 3 show the yield of polycrystalline 
copper as a function ofAr  + ion energy. The yield 
of amorphous targets such as fused silica, Ge and 
Si are shown in Figs. 4 and 5. Although Ge and 
Si are essentially single crystals, they can be 
treated as amorphous under ion bombardment 
at room temperatures [15, 16] due to random- 
ization of the lattice within collision cascades. 
From these curves it can be seen that the 
sputtering yield increases rapidly in a linear 
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Figure 3 Compar i son  o f  theoretical sput ter ing yield with 
exper imental  da ta  of  Ar  + on  polycrystall ine Cu  at no rma l  
incidence over a wide range of  ion energies. 

fashion once the ion energy reaches a threshold 
value which is characteristic of the particular ion- 
target combination. Somewhere between 1 and 
10 keV the curve shows a slowing-down in the 
rate of increase of sputtering yield, finally 
reaching a maximum. After this, the yield stays 
approximately constant in the region between 10 
and 100 keV, and at higher energies the yield 
begins to decrease due to the ions penetrating 
more deeply below the target surface and very 
few of the atoms ejected from their lattice sites 
as a result of the collisions finding their way to 
the surface. One significant fact emerging from 
this curve is that the yield is virtually independent 
of ion energy in the range 10 to 100 keV, as 
predicted by all three theories. The majority of 
the sputtering experiments (on a variety of ion- 
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Figure 4 (a) Variation of sputtering yield with ion energy 
for Ar + on fused silica according to Jorgensen and 
Wehner [25]. The yield is expressed in molecules/ion 
despite the fact that sputtered particles mostly appear as 
single atoms. 
Figure 4 (b) Variation of sputtering yield with ion energy 
on fused silica, Pyrex 7059 and soda-lime glass. Davidse 
and Maissel [26]. 

target combinations) have been carried out  in this 
ion energy range and most  o f  them tend to 
confirm the theoretical prediction of  invariance. 
In  addition, both  the theory o f  Sigmund and that  
o f  Brandt and Laubert  show reasonably good 
agreement over the entire range o f  ion energies 
f rom 0.1 to 103 keY. 
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3.2. V a r i a t i o n  o f  s p u t t e r i n g  y ie ld  w i t h  a n g l e  
o f  i on  i n c i d e n c e  

Nearly all the curves of  sputtering yield as a 
function o f  the angle o f  ion incidence display 
similar bebaviour  to that  shown in Fig. 6, which 
describes the sputtering o f  silica glasses. The yield 
increases rather slowly in the beginning, then 
increases rapidly beyond about  30 ~ (we take 0 ~ as 
perpendicular incidence), finally passes through a 
maximum at grazing incidence and falls towards 
zero at 0 = 90 ~ The maximum and the falling- 
off can be explained by the fact that  as 0 
increases, the incident ion has an increasing 
probabili ty o f  being reflected without  traversing 
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the effective surface layer because of the repulsive 
action of the potential barrier associated with the 
surface plane of atoms. Lindhard [29] shows that 
the critical angle for such reflection is given by: 

, ~  [5,, ao ~ n ~/3 Z~ Z2 ER] ~ 
- 0 = L" (-z~--~T~2/3-J-~ J (56) 

When 0 > 0, penetration of the potential barrier 
is not possible. Hence 0 corresponds to the angle 
where the sputtering yield, S, reaches its maxi- 
mum value. 

In polycrystalline solids the sputtering yield 
can be regarded as a summation of S from all the 
possible orientations of  individual grains and the 
angular dependence of  S is expected to vary 
much the same way as that for amorphous solids 
shown in Fig. 6. Recently, however, Evdokimov 
and Molchanov [30] have observed fine struc- 
tures in the sputtering curves of  Kr  +, Ar + and 
Ne + on polycrystalline Cu and Mo thought to be 
due to a certain amount  of close-packing at the 
target surface. Fig. 7 shows the variation of the 
yield with angle of  incidence for Ar + ions on 
polycrystalline copper, together with curves 
calculated according to Sigmund and the sec 0 
relationship. Fig. 8 shows the angular depend- 
ence of the yield for self-sputtering of Nb [34]. 

Sigmund finds that the sec 0 dependence, 
favoured by Thompson and Brandt and Laubert, 
and derived from a simple path-length consider- 
ation for an ion travelling in a solid, does not fit 
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Figm'e 7 Comparison of calculated sputtering yield as a 
function of incident angle with experimental data of Ar + 
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incident angle according to Summers et al [34]. Empirical 
relationship S(0) = S(0 = 0).(cos 0) -1-~ is very close to 
the (cos 0) -1.6 dependence predicted by Sigmund. 

experimental values well except for M1 < Mz. 
The agreement between experimental results and 
Sigmund's theoretical prediction, based on 
calculations of the spatial distribution of the 
energy deposited by the bombarding ion, is 
generally quite good. Other forms of angular 
dependence of sputtering yield have been found 
by various workers [21, 27, 35], the details of  
which will not be dealt with here. 

3.3. Variation of sputtering yield with the 
atomic numbers and masses of incident 
ion and tangent atom 

All three theories predict complex variations of  
sputtering yield with the atomic numbers and 
masses of  the incident ion and target atom. The 
experiments of  Almen and Bruce [19] and Rol 
et  a l  [21] appeared to confirm this. Their results 
are shown in Tables I and II  and Fig. 9. Gener- 

TABLE I Sputtering yield for Ne +, Ar +, Kr + and Xe + 
ions at 45 keV on different polycrystalline 
target materials. Almen and Bruce [19]. 

Target 
material 

Sputtering yield (atoms/ion) 

Ne Ar Kr Xe 

V 0.3 1.0 1.7 1.9 
Fe 1.3 2.3 4.0 4.9 
Ni 1.4 3.5 5.6 7.6 
Cu 3.2 6.8 11.8 19.0 
Mo 0.6 1.5 2.7 3.8 
Pd 2.5 5.3 10.5 14.4 
Ag 4.5 10.8 23.5 36.2 
Sn 1.8 4.3 8.5 11.8 
Ta 0.7 1.6 3.1 4.0 
W 1.0 2.3 4.7 6.4 
Pt 1.9 5.3 11.3 16.0 
Au 3.6 10.2 24.5 39.0 
Pb 3.6 10.5 24.0 44.5 
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T A B L E  II Sputtering yield expressed in atoms/ion for 
polycrystalline copper bombarded with the 
following ions at 15 keV. Rol et al [21]. 

Ion N Ne Na Si P 
yield 2.0 3.2 2.7 3.9 4.7 
Ion S C1 Ar K Cu 
yield 3.8 5.2 6.3 5.2 6.8 
Ion Zn Cd I Hg T1 
yield 7.1 10.5 11.0 11.2 13.1 

ally speaking, the sputtering yield tends to 
increase with increasing ion mass for the same 
target material, whereas the same cannot 
be said for increasing target mass for the same 
incident ion. Sigmund [2] has calculated the yield 
for various target materials bombarded by 400 
eV Xenon ions and obtained reasonable agree- 
ment with experimental data [36]. The sputtering 
yield for a variety of amorphous targets born- 

barded by 5 keV Ar + ions has been measured by 
Bach [37] and compared with theoretical values 
according to Brandt and Laubert. Good agree- 
ment was obtained for SiOz, TiO2 and ZnS. 
More recently Bach [38] has reported the 
sputtering yield of silica glass bombarded by Ne § 
Ar + and Xe + ions and reasonable agreement 
between experimental and calculated values was 
again achieved. 

Andersen and Bay [39] have performed 
sputtering experiments in ultrahigh vacuum 
conditions to measure the yield of copper 
bombarded by 21 different ions at 45 keV. It was 
found that the measured sputtering yield 
depended sensitively on the previous irradiation 
history of the target which changes the ejection 
conditions at the surface. This is thought to be 
due to volume diffusion (possibly damage- 
enhanced) or surface diffusion, giving rise to a 
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Figure 10 Sputtering yield ratio of copper for 21 different 45 keV ions together with the theoretical prediction of 
Sigmund. 

clustering of projectile atoms with a low yield on 
the target surface. These effects make it difficult 
to define an absolute yield for many systems. The 
sputtering yield at perpendicular incidence from 
Sigmund's theory (Equation 31) can be written as 

S -~ Const. ~ S~(Z1, Z2)/U o (57) 

where S,~(ZI, Z2) is the nuclear stopping power 
for the ion-target combination Za, Z2; o~ is a 
factor depending only on m and M i M e ,  but for 
most purposes can be taken to be independent of  
m; and U0 is the surface binding energy. Equa- 
tion 57 therefore suggests that the ratio 

S z l ,  z~ S~z(Z1, Z~) . o~(Mz/ M~) 
s s e i f  - s . ( z 2 ,  z2). ~(1) (58) 

should be independent of surface saturation 
effects if it is assumed that U o remains the same 
for both projectiles at the moment of change. 
Andersen and Bay [39] found experimentally 
that this ratio is insensitive to previous bombard- 
ments of  the target surface and agrees reasonably 
well with Sigmund's theory. Fig. 10 shows a plot 
of this sputtering yield ratio as a function of  the 
atomic number of the incident ion. The smooth 
curve indicates that the nuclear stopping power 
in copper exhibits no oscillations as a function of 
Zl. 

4. S p u t t e r i n g  e f f i c i e n c y  
We have seen that sputtering is a typical multiple 
collision process involving a cascade of moving 
target atoms. Obviously in the sputtering process, 
not all the energy of the incoming ion is deposited 
within the target. Some of it will be contained in 
sputtered and backscattered particles leaving 
the surface. Sigmund [10] defines sputtering 
efficiency, ~,, as the fraction of bombarding 
ion energy leaving a crystal via sputtering 
and backscattering: 

Eout 
?' - Ein (59) 

He has calculated this quantity for the case of  
perpendicular incidence on a random medium 
with a plane surface and shown that, unlike the 
sputtering yield, the sputtered energy is much 
less sensitive to surface conditions as reflected 
by variations in the surface binding force. 
Thompson [1 ] has measured the energy spectrum 
ofpolycrystalline gold bombarded by 41 keV Ar + 
ions and 45 keV Xe + ions using a time-of-flight 
technique. His results show that the number of  
particles ejected from the surface is determined 
by the dense low-energy part of the spectrum and 
is therefore very sensitive to the surface binding 
energy, while the total energy depends much more 
on the few high energy particles in the spectrum, 
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which are influenced relatively little by the 
surface. Sigmund has shown in his calculations 
o f  sputtering efficiency, y, that  the effect o f  
surface binding can be neglected as long as the 
ion energy is over 1 keV. It  thus appears that a 
direct measurement o f  7 will give possibly even 
more reliable information in the sputtering 
phenomenon  than, say, measurements of  the 
sputtering yield which have been widely carried 
out  in the past decade. 

In his calculations Sigmund makes use of  the 
spatial distribution o f  energy deposited by ion 
bombardment  determined previously [11 ]. He 
defines.f]3(x) dx as the average energy deposited 
in a layer of  thickness dx at depth x f rom the 
starting point. The assumptions made are that :  
(i) the target medium is r andom and infinite; (ii) 
the collisions are elastic, and (iii)the scattering 
cross section is given by that  derived by Lindhard 
et al [7, 8] (see Equat ion 19). Then for the target 
surface at 0, we have: 

if" 7 = ~ _ f]3(x) d x .  (60) 

To calculate fD(X) Sigmund makes use o f  
Edgeworth 's  expansion in terms of  spatial 
moments  over the energy distribution. He puts 

1 
~sfD(X) dx =-- f]3(~) d~ (61) 

where 
= ( x -  (x))/tz2~ (62) 

is a dimensionless variable which eliminates the 
energy dependence, and 

~ ,  = ( ( x - ( x ) ) n )  n = 2 , 3 , 4 . . .  (63) 

( x )  is given by Equat ion 32, fD(~:) can then be 
approximated by N terms in Edgeworth 's  
expansion 

N 

f]3(~:) -~ fn(~)  = ~ a ,  (~). (64) 
n=2 

The expansion on the r.h.s, is convergent. 
The sputtering efficiency can now be redefined as : 

1 (o r-<x>/# �89 
7 = E a - f ] 3 ( x )  dx ___ J_  0o ~ fD(~:) d~:. (65) 

Values o f  y calculated f rom Equat ion 65 show 
that :  (i)), is essentially independent of  ion energy 
in the range above 1 keV, and (ii) 7 depends on 
the ion-target combinat ion through the mass 
ratio M2/M~. O n e  striking result is that  ~, tends to 
increase with decreasing ion mass, though it is 
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known f rom experiment that  sputtering yield 
tends to show the opposite behaviour.  

The only investigation o f  sputtering efficiency 
so far has been that  by Andersen [40] using a 
rather complicated calorimetric method.  He 
measured 9' for  graphite, aluminium, silicon, 
copper, silver, tantalum and lead with 30 to 75 
keV He +, C +, Ne +, Ar  +, Cu +, Kr  +, Xe + and Pb + 
ion at perpendicular incidence, to an accuracy of  
+ 15~ .  The results obtained were in good 

agreement with Sigmund's  theoretical prediction. 

Acknowledgement 
We would like to thank the Nat ional  Physical 
Labora tory  for financial support  while this work  
was in progress. 

References 
1. M. W. THOMPSON, Phil. Mag. 18 (1968) 377. 
2. P. SIGMUND, Phys. Rev. 184 (1969) 383. 
3. w. BRANDT and R. LAUBERT, Nucl. Instr. Meth. 47 

(1967) 201. 
4. J. B. SANDERS, thesis, University of Leiden (1967). 
5. M. W. THOMPSON, "Defects and Radiation Damage 

in Metals" (Cambridge University Press, 1969). 
6. J.  L I N D H A R D ,  V. NIELSEN,  M. SCHAREF,  a n d  P. v .  

THOMSON, Kgl. Danske Videnskab Selskab, Mat.- 
Fys. Medd. 33 no. 10 (1963). 

7. J. LINDHARD~ M. SCHARFF~ a n d  H. E. S C H I O T T ,  

ibid33 no. 14 (1963). 
8. J. L I N D H A R D ,  V. NIELSEN,  and M. SCHARFF,  ibid 

36 no. 10 (1968). 
9. s. B. SANDERS, Canad. J. Phys. 46 (1968) 455. 

10. 1,. SIOMtJND, ibid 46 (1968) 731. 
11. P. SIGMUND and s. B. SANDERS, Proc. of Intnl. 

Conf. on Appl. of Ion Beams to Semicond. Tech- 
nology (Editions Ophrys, Paris, 1967). p. 215. 
E. SAWATZKY and E. KAY, Rev. Sci. Instrum. 37 
(1966), 1324. 
t. s. T. TSONO, Phys. Stat. Sol. (a) 7 (1971) 451. 
P. CIUTI, Nuel. Instrum. Meth. 79 (1970) 55. 
R. J. MACDONALD, Phil. Mag. 21 (1970) 519. 
D. J. MAZEY, R. S. NELSON, and R. S. BARNES~ ibid 
17 (1968) 1145. 
M. BADER, F. C. W I T T E B O R N ,  and T. W. SNOUSE~ 

NASA Report No. TR-R-105, Washington (1961). 
O. C. YONTS, C. E. NORMAND,  and D. E. HARRISON~ 

J. Appl. Phys. 31 (1960) 447. 
o. ALMEN and G. BRUCE, Nucl. Instrum. Meth. 11 
(1961) 257. 
A. L. SOUTHERN,  W.  R. W I L L I S ,  and M. T. 
ROBINSON, J. Appl. Phys. 34 (1963) 153. 
P. K. ROL,  J. M. ELUIT~ and J. KISTEMAKER~ 

Physica 26 (1960) 1000. 
M. I. GUSEVA, Soviet Phys. Solid State 1 (1959) 1410. 
c. H. WEIJSENFELD, Philips Res. Rep. Supp. No. 2 
(1967). 

12. 

13. 
14. 
15. 
16. 

17. 

18. 

19. 

20. 

21. 

22. 
23. 



S P U T T E R I N G  M E C H A N I S M S  F O R  A M O R P H O U S  A N D  P O L Y C R Y S T A L L I N E  S O L I D S  

24. G. DUPP and A. SCHARMANN, Z. Physik 192 (1966) 
284. 

25.  G . V .  J O R G E N S E N  a n d  G .  K .  W E H N E R ,  O r. Appl. Phys. 
36 (1965) 2672. 

26 .  E.  D .  D A V I D S E  a n d  L .  I .  M A I S S E L ,  J. Vac. Sci. 
Technol. 4 (1967) 33. 

27. c .  E. R A M E R ,  M. A.  B A R A S I M H A M ,  H .  K .  R E Y N O L D S  

and J. c .  ALLERD, J. Appl. Phys. 35 (1964) 1673. 
28. H. BACH, J. Non-Cryst. Solids 3 (1970) 1. 
29. J. LINDHARD, Kgl. Danske Videnskab Selskab Mat. 

Fys. Medd. 34 no. 14 (1965). 
30. I. N. EVDOKIMOV and v.  A. MOLCHANOV, Canad. J. 

Phys. 46 (1968) 779. 
31. v. A. MOLCHANOV and v. G. TELKOVSKII, Soviet 

Phys. Doklady 6 (1961) 397. 
32. G. D u P e  and A. SCHARMANN, Z. Physik 194 (1966) 

448. 

33. K. B. CHENEY, and E. T. PITKIN, J. Appl. Phys. 36 
(1965) 3542. 

34. A. J. SUMMERS, J. J. FREEMAN, and N. R. DALY, J, 
AppL Phys. 42 (1971) 4774. 

35. EI. BACH, Naturwissensehaften 55 (1968) 439. 
36. 0.  K. WEHNER, R. V. STUART, andD.  ROSENBERG, 

General Mills Annual  Report  of Sputtering Yields, 
Report  No.  2243 (1961). 

37. H. BACH, Nucl. Instrum. Meth. 84 (1970) 4. 
38. Idem, Z. Naturforseh. 27a (1972) 333. 
39. H .H.  ANDERSEN and H. BAY, Radiation Effects 13 

(1972) 67. 
40. H. H. ANDERSEN, ibM3 (1970) 51. 

Received 5 May and accepted 22 May 1972. 

135 


